
The asymmetric clock model on a Cayley tree

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 1493

(http://iopscience.iop.org/0305-4470/17/7/017)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math. Gen. 17 (1984) 1493-1507. Printed in Great Britain 

The asymmetric clock model on a Cayley tree 
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t Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 
$ Service de Physique ThCorique, CEN Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 28 November 1983 

Abstract. The asymmetric clock model is studied on a Cayley tree and commensurate and 
incommensurate phases are found. The transition lines are obtained from stability condi- 
tions and characteristic points in the phase diagram are analysed by numerical iteration. 
A critical endpoint is found for the case of three states per site and a Lifshitz point for 
the case of four states per site. 

1. introduction 

Simple models with commensurate and incommensurate modulated phases have been 
proposed and studied in the last years, the best known of which being the ANNNI model 
(Elliott 1961, Selke and Fisher 1979, Selke 1983). The asymmetric p-state clock 
model-also called chiral model-was introduced by Ostlund (1981) and Huse (1981). 
Every site can be in one of p different states. In this respect it is more complex than 
the ANNNI model. It exhibits modulated phases if the number p of possible states on 
one site is larger than two. On the other hand it has only nearest-neighbour interactions, 
while in the ANNNI model one has competing nearest- and next-nearest-neighbour 
interactions. The asymmetric clock model is similar to models studied by Cardy (1982), 
Kardar (1982) and Kardar and Berker (1982). 

The p-state asymmetric clock model can be described as follows: on each site of 
the lattice put a state 0; E { 1, . . . , p }  and let the interaction be defined by the Hamil- 
tonian 

where the first sum is over nearest neighbours in one given direction n while the 
second sum is over nearest neighbours in all directions perpendicular to n. The real 
number A is an additional parameter of the model. 

In two dimensions this model has been studied by Ostlund (1981) in the free 
fermion approximation, with Monte Carlo simulations by Selke and Yeomans (1982), 
with series expansion by Barber (1982) and with Migdal renormalisation by Huse 
(1981). In two dimensions one finds p different ordered low-temperature phases and, 
between these and the paramagnetic phase, a so-called modulated phase which has 
similar properties as the weak phase of the X Y  model. In this phase the magnetisation 
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is characterised by a continuously varying wavevector 4 in the n direction while in the 
ordered phases 4 is zero (ferromagnetic phase) or l / p  (helical phases). For p >5 the 
ordered and the paramagnetic phases are completely separated by the modulated 
phase, for p = 4 the ordered and paramagnetic phases touch each other only at integer 
values of A and for p = 3  there is a whole line of values of A according to Ostlund 
(1981) limited by Lifshitz points-at which ordered and paramagnetic phases touch. 

If the dimension is greater than two (Yeomans and Fisher 1981, Huse 1981) or 
in mean field approximation (Ottinger 1982, 1983) no modulated phase is present. 
Instead, one finds an infinite set of ordered commensurate phases with the values of 
4 varying like a devil's staircase with A (Aubry 1978). 

Here we study a similar p-state asymmetric clock model on a Cayley tree by 
considering only the first sum in (1)  as our Hamiltonian. In other words, n simply 
points towards the centre of the tree and the modulation of a phase would take place 
with respect to the generation of the tree. A similar approach has been made by 
Vannimenus (1981) for the ANNNI model. We also expect to find commensurate and 
incommensurate phases and the behaviour should be more similar to that of Hamil- 
tonian (1) on a low-dimensional lattice than on a high-dimensional one because in the 
latter case the second sum of (1) becomes more and more important. 

On the Cayley tree the model is solved easily by a recursion relation which we 
present in § 2. This recursion relation which can be viewed as nonlinear map is iterated 
numerically in § 3 and different types of attractors characterise the different phases. 
In § §  4 and 5 we use stability considerations to calculate the transition lines between 
the paramagnetic and modulated phases and between the ferromagnetic and modulated 
phases. Using the Fourier transform of the magnetisation we analyse in § 6 the 
modulated phase in more detail. The peculiar behaviour around the point at which 
the three phases meet is investigated in 9 7 and the results are summarised in § 8. 

2. Model and symmetries 

We shall consider the p-state asymmetric clock model on a Cayley tree of branching 
ratio k. The case k = 3 is illustrated in figure 1.  On every vertex on the tree we place 
the variable uI which can take the values 1,  . . . , p.  The Hamiltonian is 

with the sum running over all nearest neighbours. On the boundary of the tree-which 
we call the zeroth generation-we fix the state to be 1 on all sites (see figure 1).  Now 
the partition function is calculated iteratively by moving from the boundary towards 
the interior of the tree. The partial partition function of a branch of n generations 
where the innermost site is in state i is denoted by Zn(i). Then one can calculate the 
partial partition function of the next generation by 

for all i = 1 , .  . . , p with ( p  = l / k B T )  

a i j=exp(@J cos(2~r/p)(i-j-A)),  i , j= l ,  . . . ,  p.  (4) 
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Figure 1. Branch of a Cayley tree of branching ratio 
k = 3 in its third generation. The partial partition 
function is Z3(i). 

Figure 2. Complete phase diagram for p = 3, k = 2 
illustrating the symmetries discussed in 9 2. P: para- 
magnetic phase, M: modulated phase, F: ferromag- 
netic phase, H, and H, are the two helical phases of 
period 3, Ho is the helical phase of period 6. 

Equation (3) is a recursion relation where the first step is given by the boundary 
condition: 

Z,( i) = exp(PJ c o s ( 2 ~ / p ) (  i - 1 -A) ) .  ( 5 )  

The matrix (col,]) has the symmetries 

ui, ,(A) = W ( l + l ) m o d p , j ( A -  1) = W z , ( / + l ) m o d p ( A +  1 )  
and 

ui,j(A) = u / , i ( - A )  

for all i, j = 1 , .  . . , p. Since we have from (6) 

(8) 

a1 = q * ( A ) *  (9 )  

- 
- U ( ! -  1 )mod p,(]+l)mod p ( A )  

we define for later use 

The case A = O  is the usual p-state vector Potts model the behaviour of which is 
well understood. For p = 2 and n = 3 it is the same as the p-state standard Potts model. 
This has been studied on a Cayley tree by Baumgartel and Muller-Hartmann (1982) 
and by Moraal (1981, 1982). For p = 3, it has a first-order phase transition between 
a ferromagnetic and a paramagnetic phase. 

For a general A one obtains a phase diagram of the type shown in figure 2 for p = 3 
and k = 3. It repeats itself identically if one adds to A a multiple of p as a consequence 
of the symmetry (6). One can see that for a certain range of values of A an intermediate 
(modulated) phase appears between the ordered and disordered phases. The ordered 
phases are ferromagnetic ( (11  1)) or helical ((123) and (132) for p = 3).  It is sufficient 
to calculate the phase boundaries and their properties for A E [0, f] only, since due to 
the symmetries ( 6 )  and (7)  one can obtain the rest of the phase diagram by permutations 
of the states if one goes from one generation of the tree to the next. Therefore, we 
will subsequently show diagrams for 0 S A s 1 only. 

The ordered phase order parameter is usually the magnetisation. In p-state models 
p -  1 different magnetisations can be defined. As we are going to study modulated 
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phases the magnetisation will be space dependent, i.e. dependent on the generation 
of the tree. We define 

/ P  

Clearly one of these p quantities is a function of the others through 
D 

1 M i ( n ) = l  
i=l 

but any choice of p- 1 of the quantities defined in (10) is a good set of independent 
magnetisations. In the forthcoming discussion we will also use a mean magnetisation 

P 

M ( n ) =  C iMi(n). 
1 = 1  

In the modulated phase all magnetisations defined above will vary periodically with n 
(in general with a complicated period). A good order parameter of the modulated 
phase is, therefore, the wavevector q of the function M ( n )  from equation (12). 
Obviously for the ferromagnetic phase we have 4 = 0 and for the helical phases 
4 = 2 ~ r / p .  If the limit of infinite iterations is well defined we will use the nomenclature 
MI = limn+= Mi( n )  and M = limn+m M (  n ) .  

3. The nonlinear map 

For given n let us define the quantities 

XI =Zn(i+1)/Zn(1) ,  =Zn+l( i+l) /Zn+l( l )  (13) 
for all i = 1 , .  . . , p -  1. Then we obtain from equations (3) and (9) the expression 

flp+nlxl+. . . + f l p - l x p - l  

f l , + n , x , + .  . .+flyp-, 
x; = 

which defines a nonlinear ( p -  1) dimensional map F:  x + x'. For fixed temperature 
T and branching ratio k,  the asymmetry A serves as a control parameter. The different 
phases of the model ( 2 )  are now characterised by the different fixed points and limit 
cycles of the map F of equation (14). The phase boundaries are given by the limits 
of stability of the fixed points under the transformation F. The criterion of stability 
of a phase is given by [A, [  < 1 for all j = 1 , .  . . , p -  1 where A, are the eigenvalues of 
the Jacobian 

J l k  = aF,/&, i, k =  1,. . . , p - 1  (15) 
at the fixed point xFP of F that characterises this phase (xFP= F ( x F p ) ) .  

The map F of equation (14) has the property that the determinant of the Jacobian 
is less than 1: /det Jlkl < 1 and hence the fixed points and limit cycles described below 
are attracting. This is in contrast to the nonlinear maps which arise in mean field 
theory of similar models. These maps are area preserving (Hamiltonian), i.e. ldet Jlk(  = 1 
(cf Bak 1981, Jensen and Bak 1983, Ottinger 1983). 
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There is one trivial fixed point x, = . . . = = 1 which characterises the paramag- 
netic phase. The corresponding partial magnetisations are all equal, M, = l /p ,  and the 
mean magnetisation takes the value M = ( p +  1)/2. In figure 3 the behaviour of the 
map F is illustrated for the iteration towards this fixed point for the case p = 3, k = 2 ,  
k B T /  J = 0.3 and A = 0.489; figure 3(a )  shows a plot of x l ( n  + 1) against x l ( n )  which 
is a 'phase portrait' of the dynamical variable x or Z respectively. This kind of analysis 
is well known from dynamical systems theory (see e.g. Helleman 1980). Since we 
have chosen the parameters for this figure in the paramagnetic phase close to the 
modulated phase the points xl( n )  spiral towards the fixed point xl( n + a) = 1. Corres- 
pondingly the mean magnetisation as defined in equation (12) converges towards its 
asymptotic value M = 2.0 with oscillations with decreasing amplitude. This transient 
behaviour reminiscent of the modulated phase disappears more quickly the further 
we move with our parameters into the paramagnetic phase. 

700 
081. . 1 

0 9  10 11 1 2  500 600 
Z P  n 

Figure 3. ( a )  Plot of the ( n +  11th iterate of the partition function as the nth iterate for 
the case p = 3 ,  k =2 ,  k B T / J = 0 . 3  and 5=0.489. ( b )  Mean magnetisation (dots) defined 
in equation (12)  as a function of the generation of the tree for the parameter as in ( a ) .  

As a representative for the behaviour of the Hamiltonian of equation ( 2 )  we show 
all qualitatively different cases for the special values p = 3, k = 3 and kgT/  J = 0.8 in 
figure 4, i.e. making a horizontal cut through the phase diagram of figure 2. We chose 
the number n of iterations to be large enough to exclude boundary effects as discussed 
in the previous paragraph. Figure 4( a )  is at A = 0.1 and shows the ferromagnetic fixed 
point and the corresponding constant magnetisation. This fixed point bifurcates into 
a limit cycle which can be seen in figure 4(b) for A = O . 4 ;  the mean magnetisation 
shows an oscillatory behaviour M (  n )  - cos 4.  n +higher harmonics. This limit cycle 

I 

t * O i  
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I 
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0 007 0 2000 LOO0 

2" n 

Figure 4. 
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Figure 4. Plots as in figure 3 of the partition function (left) and magnetisation (right) for 
p = 3 ,  k = 3 ,  k B T / J = 0 . 8  for different values of A: (a )  0.1, ( b )  0.4, ( c )  0.5, ( d )  0.6, (e )  
0.9. n is chosen large enough to exclude boundary effects. 
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(or the wavevector q )  characterises the modulated phase. For A = 0.5 (figure 4(c)) we 
have the special case of 2p fixed points and hence a mean magnetisation oscillating 
exactly with a period 2p or wavevector q/27r = 1/2p. This is stable only for Az0.5 ;  
for A slightly less or larger than A = 0.5 we have limit cycle behaviour. Figure 4( d )  
shows the modulated phase for A = 0.6. Here the limit cycle has a different shape and 
the oscillation of M is characterised by an additional second, smaller wavevector 
compared to the case of figure 4(b). Finally, for A=0.9 we have p fixed points 
characterising one of the helical phases (figure 4(e)).  

The complete phase diagrams for p = 2 , 3 , 4  and 5 are shown in figure 5. The 
different phase boundaries and the modulated phases will be discussed later in detail. 
We want to conclude this section with the remark that by varying A (or T )  we found 
bifurcations from one fixed point to a limit cycle to p (or 2p) fixed points and back, 
but no chaotic behaviour, i.e. strange attractors, which would be a hint for a glass 
phase. We want to point out that the bifurcations by varying A or T are of different 
type: the transition modulated-ferro (variation of A) is produced by a slowing down 
of the speed (d/dn)  of the iteration on the limit cycle until it ‘freezes’ in (ferromagnetic 
fixed point). The modulated-para bifurcation (variation of T )  on the other hand is 
given by a continuous shrinking of the area of the limit cycle to one point (paramagnetic 
fixed point). 

I \ I 

V I 

0 0,’s 1.0 

h h 

Figure 5. Phase diagrams for O <  
A S  1.0 for different cases. P: para- 

1.0 I e l  magnetic phase, AF: antiferromag- 
netic phase, F: ferromagnetic 
phase, HI:  helical phase of period 
p ,  Ho: helical phase of period 2 p ,  
M: modulated phase. ( a )  p = 2 ,  
k = 2 ,  ( b )  p = 3 ,  k = 2 ,  ( c )  p = 3 ,  
k = 3 ,  ( d )  p = 4 ,  k = 2 ,  ( e )  p = 5 ,  
k = 2. The special points Q1 and 
Q2 in ( b )  and (c )  are discussed in 

0 0.5 1.0 0 a. 5 7.0 first-order transition, the full line 

Id I 
- 

P 

H, 
I l $ 7 .  The broken line denotes a 

b h a second-order transition. 
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4. The stability of the paramagnetic phase 

We will now discuss the calculation of the phase transition line between the paramag- 
netic phase and the other phases by means of a stability analysis. This analysis is close 
to that performed by Vannimenus (1981) for the ANNNI model. As already mentioned 
in the preceding section the paramagnetic fixed point is x1 = . . . = xP-,  = 1. The stability 
criterion ( 1 5 )  yields as condition for the phase boundary 

kh = 0, 
1 = 1  

with A = max, IA,l and A, being the eigenvalues of the matrix 

I- 
I 

’ .  . ( O , - f l p )  / 

The eigenvalue A, is real if the instability occurs at the transition to the ferromagnetic 
phase and complex for the transition to the modulated phase. The lines of limits of 
stability defined by equation (16) are transition lines if there are no other fixed points 
of the map F of equation (14) which are stable on this line or if the other fixed points 
have their limit of stability on the same line. The first is the case for the transitions 
paramagnetic-modulated, the latter occurs for p = 2 .  If, however, there is a region of 
T and A where two fixed points of the map F are stable simultaneously the present 
analysis is not sufficient to determine which one actually corresponds to the minimum 
of the free energy. This is the case at the transition paramagnetic-ferromagnetic (or 
helical) for p = 3 .  We then determine the physical phase by iteration of the map F of 
equation ( 1 4 )  as described in the preceding section. 

We shall now discuss in detail the transition lines out of the paramagnetic phase 
for different p.  Figure 5 ( a )  shows the Ising case p = 2  for k = 2 .  Here we have no 
modulated phase and the phase boundary can be calculated very easily. We obtain 

which is the same result as for the stability of the ferromagnetic phase. 

(16) yields an implicit equation for the transition line: 
The phase diagram for p = 3 and k = 2 is shown in figure 5 (  b) .  The stability criterion 

for 0 6 A S  4 3 J  
2cosh --sin-A =exp - - (f k:Tc 2.rr 3 ) (4 

and for special cases we calculate the transition temperature for arbitrary k :  

kBTc /J  = 3/[2 In((k + 2)/(  k - l ) ) ]  

kBT,/’J = 3 / [ ( 2  In(( k + 1 ) / (  k - 2 ) ) ]  

for A = 0 ( 2 0 )  

(21) 

and 

for A = 4. 
As can be seen from (21) the paramagnetic phase touches the zero temperature line 
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at A = $ (for k = 2) and has the behaviour 

kBTc/J = -3/ (4 lnl$ - AI) (22) 

in the vicinity of this point. For all other values of k the RHS of equation (21) is finite 
so that only in the Ising case or for p = 3  and k = 2  have we the possibility of a 
paramagnetic phase at T = 0 (see figure 5 (  c )  for p = 3 and k = 3). 

The phase diagrams for p = 4 and p = 5 (for k = 2) are shown in figures 5 ( d )  and 
5 (  e ) ,  respectively. The paramagnetic transition line flattens with increasing p and for 
p + 00 one expects no curvature at all. At A = 0 the transition temperature for p = 4 
is given by 

k sinh(J/ iB T,) = 1 + cosh(J/ kB T,) (23) 

which in the special case k = 2 yields kBTc/J = l / ln  3 = 0.9012. For p = 5 and k = 2 
the value at h=O is numerically kBTc/J=0.8712 and for p=lO we get kBTc/J = 
0.8636. (Both are obtained from 10 000 iterations of the map F.) 

5. The stability of the ferromagnetic phase 

The stability analysis for the ferromagnetic phase is more complicated than the analysis 
for the paramagnetic phase shown in § 4 because the fixed point is not the same €or 
the whole phase but depends on T and A. In consequence one has to obtain in addition 
the values of the relative magnetisations 

A , =  lim ( Z ~ ( i + l ) / Z ~ ( l ) ) = ~ ~ + l / ~ l ,  i =  1 , .  . . , p -1 .  (24) 
n-cc 

One can actually calculate the limit of the stability region by inverting the process by 
giving a set of values { A i }  and calculating its corresponding values of T and A and 
the eigenvalue A of the Jacobian at this point. As in § 4 the condition I A l <  1 is the 
condition for stability. This inverting procedure can be formulated for any p but for 
p > 3 it involves a higher-dimensional Newton algorithm and is thus numerically more 
tedious. Therefore we will present here the detailed prescription for p = 3 and show 
results for this case only. 

The prescription to find one point of the limiting line of stability in the (T, A) plane 
is the following. Choose a fixed value for A ,  and start with a tentative value for A2.  
Calculate a1 and a2 from the coupled linear equations 

AYkYo= Y1, 

AYkYo = Y2, 

with 

yo= 1 + alA,+  (~2A2, ~ i = A i + a i A 2 + a 2 ,  7 2  = A2 + + (~2A1. (26) 
Then calculate the eigenvalues A i  of the stability matrix 

A 1 ( Y F - 1 Y 0 ) A I ( a I Y T - a2 Y 0 
1) 

Now look for that value of A2 (by a Newton algorithm) so that 

kA = 1 
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where A = max, Ihil. The pair (Al ,  A,) determines the magnetisations of a fixed point 
on the limiting line of stability of the (T ,  A) plane. The corresponding values for T 
and A are obtained from the a 1  and a, by 

The proof of the above procedure is done in a straightforward way. These values A I  
and A, yield together with MI + M ,  + M 3  = 1 the three magnetisations on the whole 
stability line. This is shown in figure 6 for the case p = 3 ,  k =3. It should be noted 
that M3 is not zero at A = 0.5 as perhaps suggested by the figure but has a finite but 
small value. Furthermore, we remark that M2 has a maximum at about A = O . O 2 .  
These qualitative features are also found for other values of k. 

0 0.2 0 . 4  
b 

Figure 6. Partial magnetisations as a function of the asymmetry A along the ferromagnetic 
transition line for p = 3 and k = 3. 

The stability lines in the (T ,  A) plane are shown in the phase diagrams of figure 5 
for different values of p and k. The lines are partly first order and partly second order. 
This will be discussed in Q 6 .  For p > 4 this stability line is not obtained by the procedure 
described above, but simply by iterating the map F (equation (14)). 

Except for the case p = 2 where the stability lines for the ferromagnetic phase and 
the paramagnetic phase coincide there is one special point in the phase diagrams in 
which both lines meet. The nature of this point will be investigated in 0 7. For p >  4 
this occurs at A = 0 and the ferromagnetic line is always below the paramagnetic line 
for other values of A. Note that in contrast to Ostlund (1981) there is no modulated 
phase at A = 0 separating the ferro- and paramagnetic phases. For p = 3, however, the 
two stability lines cross at a finite value of A = A. and for values 0 < A  < A. there is a 
region where both phases are ‘stable’ in the sense defined in 9 3. The question of 
which one of these phases is thermodynamically stable or metastable cannot be decided 
by this criterion. We have settled this question in this case by iterating equation (14) 
and found that in this region the ferromagnetic phase is the stable one. Thus in the 
phase diagrams of figure 5 the paramagnetic stability line is not plotted in this region. 
The fact that we found a metastable and a stable phase also shows us that the transition 
is of first order as marked in the diagrams of figure 5 by broken lines. 
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6. The modulated phase 

As already mentioned in 0 3, the order parameter for the modulated phase is the 
wavevector of the oscillating mean magnetisation M (  n). This wavevector is obtained 
easily by a Fourier transform of the magnetisation M(n) .  For this purpose we have 
used the standard fast Fourier transform algorithm. Due to the finite number of 
iterations we are not able to resolve values of 4 which are smaller than 0.003. A 
typical example is given in figure 8(b) for p = 3 ,  k = 3 ,  kBT/J=0 .8  and Ah0.4. 
( S ( q )  =IN- Zno=,, M ( n )  exp(-iqn)/*.) We find not only a peak at 4 =0.57 indicating 
a period 2 ~ / q  = 11.0 but also peaks at higher harmonics of this fundamental wave- 
vector due to the nonlinearity of the map F of equation (14). 

By changing A at fixed T we find that the wavevector 4 varies continuously with 
A. This result is in contrast to similar models (Ottinger 1982, 1983, Huse 1981) in 
mean field theory where one finds instead an infinite set of ordered commensurate 
phases with the values of 4 varying like a devil’s staircase. The reason for this difference 
lies in the fact that on a Cayley tree the asymmetry parameter acts on all directions 
and hence the model behaves more like a low-dimensional one while in mean field 
theory one has infinite dimensions without A and only one with the asymmetry. 

At the transition to the ferromagnetic phase the wavevector vanishes at a fixed 
temperature as 

1 n + N  

4- (A- -Ac(mC (29) 

(except for T > T* at p = 3, where the transition is of first order (see figure 5(c) and 
next section)). Figure 7 ( a )  shows an example for this behaviour for p = 3, k = 3 and 
k,T/J = 0.8 (Ac(  T) is the critical A at this temperature). In this case the exponent 4‘ 
is determined as 5=0.526. This exponent is not universal but depends on T:  for 
kBT/ J = 1.2 we obtain 5 =0.546 as shown in figure 7(b). The fact that 5 varies 
continuously has not been found before in these models and might be related to  the 
special nature of Cayley trees as found already for the Ising model (Muller-Hartmann 
and Zittartz 1974). 

If we move very close to the transition line, we have to iterate the map F often 
enough in order to see the periodic structure of the magnetisation in the modulated 
phase. Figure 8( a )  shows an example for p = 3, k = 3, kBT/ J = 1.0 and A = 0.241 64. 
Only after 24 000 iterations we can see a period of roughly 21 400. Another striking 

Ibl 

- 
4 -  

9 -  

001- 

0 01 I I , I I I I I I  I I 1 1 , l I I I  1 I , I 1  8 / 1 1  

0 0001 0001 0 01 0 0001 0 001 
h 4 <  h - A ,  

Figure 7. Log-log plot of the wavevector q in the modulated phase close to the ferromag- 
netic transition for p = 3 ,  k = 3  and ( a )  k , T / J = 0 . 8 ,  ( b )  k , T / J = 1 . 2  (full circles) and 
k , T / J =  1 .38  (crosses). 
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Ibl O t  

[ U 1  
-30 

I 1 I , 1 I , , , , 1 1 , 1 , 210 , , ' d b 3  
0 5 10 1 5  -12 0 L 0 4  0'0 1 2  

n 9 

Figure 8. ( a )  Mean magnetisation as a function of generation in the modulated phase 
close to the ferromagnetic transition for p = 3 ,  k = 3 ,  k,T/ J = 1.0 and A = 0.241 64. Note 
the long period of -21 400. ( 6 )  Typical example of the Fourier transform of the mean 
magnetisation ( p  = 3 ,  k = 3, k,T/J = 0.8, A = 0.4). 

feature is the fact that the magnetisation is constant for many iterations (i.e. a large 
portion of the tree) interrupted only by a few kinks connecting two of the three possible 
states. (This is true also for other values of p) .  The transition to the ferromagnetic 
phase can now be understood as a melting of the kink lattice where the distance 
between two successive kinks becomes infinite (cf Jensen and Bak 1983). 

The transition from the modulated to the paramagnetic phase is characterised not 
by the wavevector but by the amplitude of the modulation of the magnetisation. This 
amplitude is correlated with the area of the limit cycle (cf § 3). In figure 9 we show 
the amplitude 

dy = max(M( n ) )  - min(M( n ) )  (30) 

if one approaches the paramagnetic-modulated transition line from the modulated 
phase for p = 3, k = 3 for A fixed close to Q1 (at A =0.08). Since this amplitude goes 
continuously to zero at the transition line, this transition is of second order. Since 
figure 9 is a log-log plot we can estimate from the slope the exponent for dy to be 
0.52. This exponent changes drastically if one changes A and for A = 0.2 ( p  = 3, q = 3) 
one finds a value of 6.5. The wavevector, o n r h e  other hand, remains finite at the 
transition for all A. 

7. The Lifshitz point 

Here we focus on the properties of the exceptional points Q1 and QZ in figures 5 ( b )  
and 5(c ) ,  for the case p = 3 and Q for the case p> 3. As we have seen in P 6 the 
question arises whether the point Q1 is a Lifshitz point (Hornreich et a1 1975, Michelson 
1977), i.e. if q goes to zero at this point, similarly to the lower part of the ferro- 
modulated transition line. While for the latter we had fixed the temperature T and 
varied A only we now vary both asymmetry and temperature, so that we move on a 
straight line into the point Q1. (The result does not depend on the slope of this line.) 
Surprisingly we find that q does not vanish when we approach Q1 but remains finite 
even with ]A - A,/ < whereas in the former case we found that q vanished already 
for IA-A,] < low4 (see figure lo), where Ac is the critical asymmetry at which the 
transition modulated to ferromagnetic phase occurs. This is thus a jump in q at Q1, 
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0011 1 I 
lo-L 10-3 

T , - T  

Figure 9. Log-log plot of dy against T,- T at fixed 
A = 0.08 for p = 3, k = 3. T, = 1.6156 is the critical 
temperature of the paramagnetic-modulated phase. 
The slope is 0.52. 

Oo5- A - A c  

i = = - = -  

Figure 10. Wavevector q against A - A c  if one 
approaches the point O1 from the modulated phase 
with p = 3 ,  k = 3 .  4' is the resulting residual 
wavevector. 

i.e. a first-order transition. This result clearly shows that Q1 is not a Lifshitz point 
but a critical endpoint (see e.g. Kincaid and Cohen (1974)). 

Denoting this residual wavevector by 4 we can now ask the question if this is only 
true for the point Q1 or if this behaviour extends over a finite range on the ferromag- 
netic-modulated transition. 

We have investigated this by calculating the residual wavevector 4, defined as the 
q obtained at lA-Acl = along the transition line. Since at Q1 this distance from 
the critical value of A already gives the correct 4 up to our numerical accuracy (see 
figure 10) we have used this as a definition of 4. We find that at QZ = (T* ,  A*) this 
residual wavevector vanishes like 

i - ( A * - A ) "  with x = 0.81 (31) 

for p = 3, k = 3 (cf figure 1 l ) ,  so that for T < T* we have a second-order transition 

L /- 

t J 

0.OlC - 
A b - A  

0 001 0 01 01 

Figure 11. Log-log plot of the residual wavevector 
4' as a function of the asymmetry A along the fer- 
romagnetic transition line ( p  = 3, k = 3). 

4 0 03,- 

I 
0 0 l t  

0003, 
0003 0 0 1  0 0 3  01 

A 

Figure 12. Log-log plot of the wavevector q against 
A ( A , = O )  for p = 4 ,  k = 2  ( T + T c = l / l n 3 ) .  The 
slope is one. 
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as described already in 0 6 while for T > T* the transition modulated-ferromagnetic 
is of first order. The critical point Qz was determined as k B T * / J  = 1.383 and A* = 0.145 
for p = 3 and k = 3. For p = 3 and k = 2 we have kBT*/J = 0.95 and A* = 0.13. 

This situation is completely different for p = 4. There we find that indeed 4 vanishes 
at Q where the ferromagnetic and paramagnetic lines of stability touch at A = 0 (see 
figure 5 ( d ) ) .  Furthermore, if one approaches the point from the modulated phase the 
exponent 5 is 1 (for p = 4, k = 2 ) ,  see figure 12. Therefore, this point is really a Lifshitz 
point (Hornreich et a1 1975, Michelson 1977). In addition on the whole line separating 
the modulated and the ferromagnetic phase we have a second-order transition. These 
results clearly indicate that the case with p = 3 is an exceptional one. Disregarding 
the simple case p = 2 (Ising) and p = 3, we find a Lifshitz point at A = 0 for all other 
values of p and k and a second-order transition from the modulated to the ferromagnetic 
and paramagnetic phase. 

8. Summary 

We have studied the p-state asymmetric clock model on a Cayley tree with branching 
ratio k. Besides the ordered phases at low temperatures (ferromagnetic and helical 
phases) a modulated phase is found at finite asymmetry A. It is characterised by a 
continuously varying wavevector 4 in contrast to results for a similar model in mean 
field theory where 4 varies like a devil’s staircase. For p > 4 and arbitrary k we found 
a Lifshitz point at zero asymmetry. The case p = 3 is an exceptional one for several 
reasons: firstly due to the crossing of the ferromagnetic and paramagnetic lines of 
stability there is a distinct point in the phase diagram at finite A but this point is not 
a Lifshitz point. Instead we find a whole range of first-order transition from the 
modulated into the ferromagnetic phase which is the second difference from the other 
cases. A very interesting feature that we find is that the exponent characterising the 
vanishing of the order parameter 4 at the second-order transition is not universal but 
depends on the asymmetry (or temperature). This point will be studied in detail in 
the future. 

We have characterised the different phases of the model by the behaviour of the 
nonlinear map. Although this map shows bifurcations from one fixed point to a limit 
cycle there is no chaotic behaviour as found in maps arising in mean field theory of 
similar models. The main difference between the mean field maps and the map in this 
and related cases is the fact that here the maps are contracting towards the fixed point 
(and limit cycles) whereas in the other case the maps are area preserving (Hamiltonian). 
We note that on hierarchical lattices the study of nonlinear maps has also turned out 
to be very clarifying (Svrakii: et a1 1982, McKay et a1 1982, Derrida et a1 1983). We 
feel that the language of dynamical systems which we have used here will be a useful 
tool also in other areas. 
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